State-of-the-Art on Video-Based Face Recognition
نویسندگان
چکیده
Over the past few years, face recognition has gained many interests. Face recognition has become a popular area of research in computer vision and pattern recognition. The problem attracts researchers from different disciplines such as image processing, pattern recognition, neural networks, computer vision, and computer graphics (Zhao, Chellappa, Rosenfeld & Phillips, 2003). Face recognition is a typical computer vision problem. The goal of computer vision is to understand the images of scenes, locate and identify objects, determine their structures, spatial arrangements and relationship with other objects (Shah, 2002). The main task of face recognition is to locate and identify the identity of people in the scene. Face recognition is also a challenging pattern recognition problem. The number of training samples of each face class is usually so small that it is hard to learn the distribution of each class. In addition, the within-class difference may be sometimes larger than the between-class difference due to variations in illumination, pose, expression, age, etc. The availability of the feasible technologies brings face recognition many potential applications, such as in face ID, access control, security, surveillance, smart cards, law enforcement, face databases, multimedia management, human computer interaction, etc (Li & Jain, 2005). Traditional still image-based face recognition has achieved great success in constrained environments. However, once the conditions (including illumination, pose, expression, age) change too much, the performance declines dramatically. The recent FRVT2002 (Face Recognition Vendor Test 2002) (Phillips, Grother, Micheals, Blackburn, Tabassi & Bone 2003) shows that the recognition performance of face images captured in an outdoor environment and different days is still not satisfying. Current still image-based face recognition algorithms are even far away from the capability of human perception system (Zhao, Chellappa, Rosenfeld & Phillips, 2003). On the other hand, psychology and physiology studies have shown that motion can help people for better face recognition (Knight & Johnston, 1997; O'Toole, Roark & Abdi, 2002). Torres (2004) pointed out that traditional still image-based face recognition confronts great challenges and difficulties. There are two potential ways to solve it: video-based face recognition technology and multi-modal identification technology. During the past several years, many research efforts have been concentrated on video-based face recognition. Compared with still image-based face recognition, true video-based face recognition algorithms that use both spatial and temporal information started only a few years ago (Zhao, Chellappa, Rosenfeld & Phillips, 2003). This article gives an overview of most existing methods in the field of video-based face recognition and analyses their respective pros and cons. First, a general statement of face recognition is given. Then, most existing methods for video-based face recognition are briefly reviewed. Some future trends and conclusions are given in the end.
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009